the fibering map approach to a quasilinear degenerate p(x)-laplacian equation
Authors
abstract
by considering a degenerate $p(x)-$laplacian equation, a generalized compact embedding in weighted variable exponent sobolev space is presented. multiplicity of positive solutions are discussed by applying fibering map approach for the corresponding nehari manifold.
similar resources
The fibering map approach to a quasilinear degenerate p(x)-Laplacian equation
By considering a degenerate $p(x)-$Laplacian equation, a generalized compact embedding in weighted variable exponent Sobolev space is presented. Multiplicity of positive solutions are discussed by applying fibering map approach for the corresponding Nehari manifold.
full textA Fibering Method Approach to a System of Quasilinear Equations with Nonlinear Boundary Conditions
We provide an existence result for a system of quasilinear equations subject to nonlinear boundary conditions on a bounded domain by using the fibering method.
full textfrom linguistics to literature: a linguistic approach to the study of linguistic deviations in the turkish divan of shahriar
chapter i provides an overview of structural linguistics and touches upon the saussurean dichotomies with the final goal of exploring their relevance to the stylistic studies of literature. to provide evidence for the singificance of the study, chapter ii deals with the controversial issue of linguistics and literature, and presents opposing views which, at the same time, have been central to t...
15 صفحه اولConvergence to steady states for radially symmetric solutions to a quasilinear degenerate diffusive Hamilton-Jacobi equation
Convergence to a single steady state is shown for non-negative and radially symmetric solutions to a diffusive Hamilton-Jacobi equation with homogeneous Dirichlet boundary conditions, the diffusion being the p-Laplacian operator, p ≥ 2, and the source term a power of the norm of the gradient of u. As a first step, the radially symmetric and non-increasing stationary solutions are characterized.
full textAsymptotic Behavior of Solutions to a Degenerate Quasilinear Parabolic Equation with a Gradient Term
This article concerns the asymptotic behavior of solutions to the Cauchy problem of a degenerate quasilinear parabolic equations with a gradient term. A blow-up theorem of Fujita type is established and the critical Fujita exponent is formulated by the spacial dimension and the behavior of the coefficient of the gradient term at ∞.
full textA Fibering Map Approach to a Semilinear Elliptic Boundary Value Problem
We prove the existence of at least two positive solutions for the semilinear elliptic boundary-value problem −∆u(x) = λa(x)u + b(x)u for x ∈ Ω; u(x) = 0 for x ∈ ∂Ω on a bounded region Ω by using the Nehari manifold and the fibering maps associated with the Euler functional for the problem. We show how knowledge of the fibering maps for the problem leads to very easy existence proofs.
full textMy Resources
Save resource for easier access later
Journal title:
bulletin of the iranian mathematical societyPublisher: iranian mathematical society (ims)
ISSN 1017-060X
volume 41
issue 6 2015
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023